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Abstract

Family relatives of children with nonsyndromic cleft lip with or without cleft palate (NSCL/P) 

who presumably carry a genetic risk yet do not manifest overt oral clefts, often present with 

distinct facial morphology of unknown genetic etiology. This study investigates distinct facial 

morphology among unaffected relatives and examines whether candidate genes previously 

associated with overt NSCL/P and left–right body patterning are correlated with such facial 

morphology. Cases were unaffected relatives of individuals with NSCL/P (n = 188) and controls 

(n = 194) were individuals without family history of NSCL/P. Cases and controls were genotyped 

for 20 SNPs across 13 candidate genes for NSCL/P (PAX7, ABCA4-ARHGAP29, IRF6, MSX1, 

PITX2, 8q24, FOXE1, TGFB3 and MAFB) and left–right body patterning (LEFTY1, LEFTY2, ISL1 

and SNAI1). Facial shape and asymmetry phenotypes were obtained via principal component 

analyses and Procrustes analysis of variance from 32 coordinate landmarks, digitized on 3D facial 

images. Case–control comparisons of phenotypes obtained were performed via multivariate 

regression adjusting for age and gender. Phenotypes that differed significantly (P < 0.05) between 

cases and controls were regressed on the SNPs one at a time. Cases had significantly (P < 0.05) 

more profile concavity with upper face retrusion, upturned noses with obtuse nasolabial angles, 

more protrusive chins, increased lower facial heights, thinner and more retrusive lips and more 
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protrusive foreheads. Furthermore, cases showed significantly more directional asymmetry 

compared to controls. Several of these phenotypes were significantly associated with genetic 

variants (P < 0.05). Facial height and width were associated with SNAI1. Midface antero-posterior 

(AP) projection was associated with LEFTY1. The AP position of the chin was related to SNAI1, 

IRF6, MSX1 and MAFB. The AP position of the forehead and the width of the mouth were 

associated with ABCA4–ARHGAP29 and MAFB. Lastly, facial asymmetry was related to LEFTY1, 

LEFTY2 and SNAI1. This study demonstrates that, genes underlying lip and palate formation and 

left–right patterning also contribute to facial features characteristic of the NSCL/P spectrum.
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Introduction

Non-syndromic cleft lip with or without cleft palate (NSCL/P) is a common craniofacial 

birth defect present in about 1 in 700 live births (Mossey et al., 2009). The incidence of 

NSCL/P varies by ancestry with rates of 1 in 500 live births in Asian and Native American 

populations, and rates of 1 in 2400 in African-based populations (Kirschner & LaRossa, 

2000; Arosarena, 2007). Clinically, NSCL/P imposes a significant burden in affected 

individuals on many aspects of everyday life such as eating, speech and facial appearance, 

and thus significantly increases overall health care needs (Wehby & Cassell, 2010). 

Although significant progress has been made in understanding the genetic etiology of 

syndromic orofacial clefting (see review, Marazita, 2012) the identification of genetic 

variants etiological for NSCL/P has progressed at a slower pace due to its multifactorial 

nature (Dixon et al., 2011).

A key to understanding the etiology of NSCL/P lies in discerning the complex spectrum of 

subphenotypic expression of this condition, not only in individuals presenting overt clefts, 

but also in their seemingly unaffected close relatives with whom they share a portion of their 

genome and who could also be affected with less apparent features of the subphenotypic 

spectrum of NSCL/P. Studies have begun to unravel the complex phenotypic expression of 

NSCL/P beyond overt clefts, with promising results and possibilities for future research 

(Weinberg et al., 2008a, b; Weinberg et al., 2009). Subphenotypes of clefting studied 

previously can be categorized as either postcranial or craniofacial. Examples of postcranial 

subphenotypes include a preponderance of non-right-handedness, a higher incidence of 

slower forming or rare fingerprints and increased fluctuating asymmetry (FA) in 

dermatoglyphic patterns (Weinberg et al., 2006). Craniofacial subphenotypes include 

distinct craniofacial dimensions and facial morphology patterns, orbicularis oris muscle 

(OOM) discontinuities, dental anomalies, velopharyngeal incompetency, lip whorls, brain 

structure and vertebral anomalies, and both fluctuating and directional asymmetry (DA) that 

could be manifested in facial and dental traits (Weinberg et al., 2006; Neiswanger et al., 

2009).
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This study focuses on distinct facial morphology patterns in addition to aspects of facial 

asymmetry present in the relatives of children with NSCL/P. The majority of NSCL/P 

studies involving craniofacial dimensions and facial morphology patterns in unaffected 

relatives of children with clefts have relied mostly on lateral and PA cephalograms 

(McIntyre & Mossey, 2002, 2010; Weinberg et al., 2006). Despite a few inconsistent results, 

studies have shown that seemingly unaffected relatives of individuals with NSCL/P present 

with narrower cranial vaults, longer cranial bases, wider, shorter and more retrusive upper 

faces, longer and more protrusive lower faces, wider soft tissue noses and wider nasal 

cavities than controls (McIntyre & Mossey, 2002; Maulina et al., 2006; Weinberg et al., 

2006) regardless of ethnic ancestry (Otero et al., 2012). Some of these features largely 

resemble those seen in unrepaired patients with overt clefts of the lip and palate. In 

particular, cephalometric studies of unrepaired patients have shown that affected individuals 

present with decreased vertical and antero-posterior dimensions in the maxilla, downward 

and backward rotation of the mandible with a very steep mandibular plane, reduced 

posterior facial height, and increased anterior facial height giving the appearance of 

bimaxillary retrusive faces (Bishara et al., 1986; da Silva Filho et al., 1998; Liao & Mars, 

2005), supporting the presence of distinct facial morphology in cleft risk carriers both with 

and without overt clefts.

More recently, work has been undertaken to examine these morphological differences using 

three-dimensional imaging and shape analysis methods including geomorphometric methods 

(GM) (Weinberg et al., 2008a, b, 2009). These studies have shown that unaffected male 

relatives present with greater upper facial and cranial base widths, increased lower facial 

height, and decreased upper facial height compared to controls. Female relatives also have 

shown similar facial patterns, with increased upper facial width, more lateral placement of 

the alar cartilage, and midfacial retrusion (Weinberg et al., 2008a, b, 2009).

In addition to the morphometric studies described above, work has also been done to 

examine overall levels of body (Werner & Harris, 1989; Neiswanger et al., 2002, 2005) and 

craniofacial bilateral asymmetry (McIntyre & Mossey, 2010) in NSCL/P families. The 

effects of asymmetry on the phenotype can be classified as either FA or DA (Klingenberg et 

al., 2002;Weinberg et al., 2006). FA is defined as random deviations from symmetry within 

a form such as the human face that has object symmetry (i.e. symmetry along a central axis; 

Valen, 1962; Klingenberg et al., 2002; Weinberg et al., 2006). In contrast, DA involves 

structures that are systematically larger or preferentially asymmetric on one side of the body 

vs. the other (Valen, 1962). FA results as a compromise between the processes of 

developmental noise (a set of processes that cause perturbations in normal development) and 

developmental stability (processes that prevent or nullify disruption in the developmental 

process). This is illustrated by a tendency for FA to increase if there is: (i) an increase in 

developmental noise or (ii) a decrease in developmental stability within an organism 

(Palmer & Strobeck, 1992; Palmer, 1994). Since FA in the craniofacial phenotype can be 

indicative of developmental perturbations and instability, it is an important component in 

examining the cleft phenotype. Studies have found increased levels of FA in dermatoglyphs 

and dental traits in individuals with clefts and their unaffected relatives compared with 

control populations (Weinberg et al., 2006). In addition, dental anomalies including bilateral 

asymmetrical expression of missing teeth have been found more often in individuals with 
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clefts than in controls (Sofaer, 1979; Nystrom & Ranta, 1988; Werner & Harris, 1989; 

Weinberg et al., 2006; Menezes & Vieira, 2008), suggesting examples of FA as part of the 

phenotypic spectrum of NSCL/P.

Overt clefts of the lip can be unilateral or bilateral, with unilateral clefts being twice as 

common as bilateral clefts (Kirschner & LaRossa, 2000; Arosarena, 2007). In unilateral cleft 

cases, there is a strong predominance of left side unilateral clefts over the right side (Mossey 

et al., 2009). Given the left side predilection, it can be hypothesized that asymmetry and, 

specifically, left-side DA may be a subphenotype of the NSCL/P spectrum in affected 

individuals as well as their seemingly unaffected relatives (Neiswanger et al., 2002, 2005; 

Weinberg et al., 2006). A few DA studies have found DA in parents of children with 

NSCL/P (McIntyre & Mossey, 2002, 2010) and, interestingly, some have found positive 

correlations between the side of DA within the nasomaxillary complex of the parents and the 

side of the cleft in their affected children (Yoon et al., 2003).

Studies of NSCL/P susceptibility genes have mostly utilized a qualitative rather than a 

quantitative definition to designate affection status for patients with overt clefts. These 

studies have shown consistent results for the presence of etiological variants nearby or 

within genes and loci MSX1, TGFB3 (Lidral et al., 1998), IRF6 (Zucchero et al., 2004; 

Vieira et al., 2007; Wu et al., 2010), FGF and FGFR families (Bei & Maas, 1998; Riley & 

Murray, 2007; Riley et al., 2007; Vieira et al., 2007), BMP4 (Bei & Maas, 1998; Suzuki et 

al., 2009), FOXE1 (Moreno et al., 2009; Venza et al., 2011), ADH1C (Chevrier et al., 2005), 

MAFB and ABCA4-ARGHAP 29 (Beaty et al., 2010), PAX7 (Mansouri et al., 1996; Dahl et 

al., 1997), and 8q24 (Birnbaum et al., 2009; Beaty et al., 2010; Mangold et al., 2010; 

Boehringer et al., 2011). In addition, recent studies have found that some of these genes, 

including BMP4, MSX1, TGFB3 and 8q24, can also modulate the expression of the 

phenotypic spectrum in patients with NSCL/P including dental anomalies (van den 

Boogaard et al., 2000; Slayton et al., 2003; Modesto et al., 2006; Suzuki et al., 2009), 

microform cleft lip, and other aspects of cleft craniofacial facial variation such as the 

bizygomatic distance (Boehringer et al., 2011). Moreover, animal knockout models for some 

of these genes present with craniofacial dysmorphology in addition to the presence of overt 

oral clefts (Table 1).

Candidate genes implicated in left–right body patterning such as PITX2 (Lin et al., 1999; 

Boorman & Shimeld, 2002), ISL1 (Yuan & Schoenwolf, 2000), SNAI1 (Paznekas et al., 

1999), LEFTY1 and LEFTY2 (Meno et al., 1997) are also of interest given the findings that 

FA and DA are part of the cleft phenotype. In addition, PITX2, ISL1 and SNAI1 have very 

specific roles during the formation of the lip, palate and anterior teeth as well as for facial 

expression and masticatory muscles (Table 2) and therefore these genes may be responsible 

for patterns of DA and FA in addition to other distinct facial features within the large 

phenotypic variation present in individuals with NSCL/P risk.

There is an extensive amount of literature on the phenotypic spectrum of NSCL/P (McIntyre 

& Mossey, 2002; Maulina et al., 2006; Weinberg et al., 2006) and the role of key cleft and 

craniofacial candidate genes in NSCL/P overt clefts (Dixon et al., 2011). However, there is a 

lack of studies focusing on how particular genotypes of these genes and loci and genes 
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involved in left–right body patterning influence the phenotypic expression of the clefting 

spectrum in individuals with clefts and their close relatives. Only a handful of recently 

published studies not focused on NSCL/P have attempted to study genetic associations with 

facial morphology in general samples, via GWAS and 3D facial imaging methods 

(Boehringer et al., 2011; Liu et al., 2012). More studies are needed to understand 

phenotype–genotype correlations not only in the general population but also in individuals 

carrying genetic risk for craniofacial conditions, especially NSCL/P. The purpose of this 

study is to identify features of distinct facial morphology and bilateral facial asymmetry 

present in seemingly unaffected relatives of children with NSCL/P and to explore the role of 

cleft and left–right body patterning candidate genes in these distinct features. This effort will 

help prioritize genetic pathways important in the overall cleft phenotypic spectrum beyond 

overt clefts for future research.

Materials and methods

The study protocol was reviewed and approved by the Institutional Review Board at the 

University of Iowa. The study sample consisted of 188 unaffected relatives (‘cases’; n = 119 

parents and n = 69 siblings) of children with NSCL/P and 194 control individuals with no 

family history of oral clefts or facial surgeries (Table 3). Study individuals were recruited in 

Iowa as part of the Iowa Oral Cleft Study. The majority of the sample (n = 362) self-

reported their race as Caucasian; a minority (n = 20) reported their race as non-Caucasian, 

including Asian, African American, Native American or Alaskan Native, or other.

To maximize our statistical power and to capture common morphological features that are 

shared by unaffected relatives regardless of their sex or age, our main analysis combined all 

cases (and controls) adjusting for age and gender and accounting for family clustering as 

described below in detail. We also explored heterogeneity by age/gender stratifying the total 

sample into four subgroups by age category and gender. Our statistical analyses for case–

control phenotype differences and genetic associations are described below in detail.

Facial morphology and asymmetry phenotypes

Facial phenotypes were generated from three-dimensional stereophotogrammetric images 

taken with a 3dMD imaging system (Lubbers et al., 2010). Stereophotogrammetry is an 

established tool for capturing facial surface phenotypic information that has been employed 

in several other similar studies (Seager et al., 2009; Weinberg et al., 2009; Incrapera et al., 

2010). A total of 32 standard facial 3D coordinate landmarks were collected from the 3dMD 

facial images (Fig. 1, Table 4) and were verified for reliability in a subsample of 15 

individuals digitized twice with 2 weeks between digitizing sessions. T-tests, Euclidean 

distance (ED) and intra-class correlation methods (ICC; Landis & Koch, 1977) were 

employed to evaluate landmarking error between the two digitizing attempts. The average 

ED obtained was 1 mm; however, landmarks Glabella, Pogonion and Gnathion showed EDs 

of above 2 mm. T-tests were used to evaluate whether the distances between coordinate 

locations from both attempts were significantly different from zero. A total of 32 t-tests per 

coordinate (X, Y and Z) were calculated. We considered the t-test significant at P = 0.001 

(0.05/32 = 0.001). None of the coordinates were significantly different from zero at P = 
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0.001. Overall results from ICC showed values above 0.8, indicating good to excellent 

reliability except for the landmark Pogonion (ICC = 0.77). Efforts were made to resolve the 

discrepancies for Glabella, Pogonion and Gnathion until good reliability was obtained.

Once all facial images were digitized, coordinates of the land-mark configurations were 

subjected to GM analyses for the pooled and stratified samples separately using MORPHOJ 

(Klingenberg, 2011). Facial landmark configurations in this study have object symmetry, 

meaning that both the left and right side of the face (divided by the midsagittal plane) are 

mirror images of each other. Following the methodology in MORPHOJ for data with object 

symmetry (Mardia et al., 2000; Klingenberg et al., 2002) all original landmark 

configurations were reflected and relabeled. Subsequently, both the original and their 

relabeled mirrored configurations were registered using the Procrustes fit procedure in MORPHOJ 

and the total shape variation was partitioned into components of symmetric and asymmetric 

shape variation. Symmetric components of shape indicate variation among individuals in the 

average between their original and reflected landmark configurations. Despite any left–right 

asymmetry present in the original landmark configuration in any given individual, the 

average configuration between the original and its reflection is always a symmetric shape 

(Klingenberg et al., 2002). In symmetric variation, bilateral paired facial landmarks can vary 

in any direction but midfacial unpaired landmarks can only vary along the midsagittal plane. 

On the other hand, the asymmetric component of shape variation quantifies the differences 

between the original and reflected configuration within individuals. For the paired 

landmarks, asymmetry can be in any direction, but for the unpaired landmarks variation can 

only be in a direction perpendicular to the midsagittal plane (Klingenberg et al., 2002). 

Covariance matrices for both the symmetric and asymmetric components were generated 

and subsequently submitted separately to principal component analyses (PCA) to determine 

components of symmetric and asymmetric facial shape variation (Mardia et al., 2000; 

Klingenberg et al., 2002). Scree plots of the PCA were used to determine the number of 

symmetric and asymmetric shape components that explained the most variation for further 

analysis.

The resultant components were tested for differences between cases and controls in the 

pooled sample via multivariate linear regression by regressing the components, one at a 

time, on an indicator for case vs. control status, sex, and indicators for five age categories 

(C1: 0–10 years, C2: 11–19 years, C3: 20–29 years, C4: 30–39 years and C5: 40–70 years). 

To account for family clustering, the regression model included family–random effects that 

allowed for dependence between individuals in the same family (Wooldridge, 2002). The 

random-effect models were estimated in STATA (StataCorp, 2011). Next, we explored 

differences in the phenotype principal components between cases and controls stratifying the 

sample by age and sex into four groups: (i) adult females (> 18 years) including mothers of 

affected children and adult female controls; (ii) adult males (> 18 years) including fathers of 

affected children and adult male controls; (iii) subadult females (≤ 18 years), including 

sisters, of affected children and control female children; and (iv) subadult males (≤ 18 

years), including brothers of affected children and control male children. Linear regression 

was used, controlling for age as a continuous variable (in years). Since only a few children 

were blood relatives within each stratified subgroup, it was not feasible to include random-

effects to account for relatedness similar to the pooled analysis. Instead, we limited each 
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subgroup to non-related individuals by excluding the younger blood-related children. 

Therefore, none of the individuals within the stratified analysis was blood-related.

In addition to PCA, a Procrustes analysis of variance (ANOVA) assuming an isotropic model 

(equal variance around each landmark position) and a multivariate analysis of variance 

(MANOVA) approach in a non-isotropic model (non-equal variance) were performed to quantify 

the effects of ‘Individuals’ (symmetric component), ‘Sides’ or DA, and ‘Individuals × Sides’ 

or FA in the overall shape variation of the pooled sample and for each sample subgroup in 

the stratified analysis (Mardia et al., 2000; Klingenberg et al., 2002).

Directional asymmetry was calculated as the mean difference between each configuration 

and its reflection, which is equivalent to the average difference between sides. Overall DA 

was computed as the average asymmetry across all individuals in both the pooled and the 

stratified samples. DA comparisons between cases and controls were performed via 

discriminant function analyses and permutation tests in MORPHOJ utilizing Procrustes distances 

(a measure of the absolute magnitude of shape differences which does not take into account 

the direction of the mean differences) and also the T-square statistic, which does take into 

account the extent of variation in different directions of space (Klingenberg & Monteiro, 

2005; Klingenberg et al., 2010).

Fluctuating asymmetry measures the dispersion of left–right differences within individuals; 

in other words, FA corresponds to the deviation of each individual’s asymmetry from the 

overall average of asymmetry in the sample. In this study, individual FA scores were 

calculated in Procrustes distances and Mahalanobis distances (scaled relative to the variation 

of asymmetry in the sample) utilizing MORPHOJ. These individual FA scores were also 

compared between cases and controls both in the pooled and stratified samples using the 

same regression models described above for the principal component phenotypes.

Finally, we evaluated centroid size as a proxy to measure the overall size of a face. Centroid 

size was calculated as the square root of the sum of squared distances between the centroid 

and all other points in the landmark configuration. We compared centroid size between 

cases and controls using the same regression models described above for the principal 

components and FA scores.

In summary, the phenotypic data derived from the application of GM methods in both the 

pooled and the stratified samples included principal components of symmetric and 

asymmetric shape variation, overall levels of DA, individual FA scores and centroid size. As 

described above, case–control differences in phenotypes were performed via discriminant 

function analysis for DA phenotypes with MORPHOJ and multivariate regression analyses for all 

other individuallevel phenotypes, accounting for family dependence and adjusting for sex 

and age group in the pooled analysis and continuous age in the sex/age stratified analyses. 

Phenotypes that were found to vary significantly (P < 0.05) between cases and controls were 

subsequently examined for association with the genetic variants as described below.
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Genetic analysis

Genotypes for 20 SNPs across 13 candidate genes and loci (Table 5) implicated in 

craniofacial variation and clefting (PAX7, ABCA4-ARHGAP29, IRF6, MSX1, 8q24, FOXE1, 

TGFB3 and MAFB) as well as left/right body patterning (LEFTY1, LEFTY2, ISL1, PITX2 

and SNAI1) were generated via Taqman assays from Applied Biosystems (Foster City, CA, 

USA). Allele frequencies were calculated with the NCSS statistical package (Hintze, 2006) 

and SNP genotypes were recoded based on the number of rare alleles present (i.e. 0, 1 or 2 

copies of the rare allele present) in an individual’s genotype.

Multivariate regressions were employed to test for the association between each of the 20 

SNPs and the phenotypes that varied significantly (P < 0.05) between cases and controls 

from the analyses described above. Similar to the regressions of the phenotypes on case–

control status described above, the regressions of phenotypes on SNPs controlled for sex and 

age groups as covariates and included random effects to account for familial dependence.

Next, we evaluated whether differences in phenotypes by case–control status were explained 

by differences in allele frequencies between cases and controls. For each phenotype that was 

significantly associated with a SNP in the above-described regressions, we re-estimated the 

regression for that phenotype and the significant SNP, adding case/control status as a 

covariate (in addition to the gender and age covariates). We then compared the coefficient of 

the case/control status in this regression with that in the regression model excluding the SNP 

(i.e. the original regression model comparing the phenotype by case–control status) to 

evaluate whether the SNP explained any of the case–control difference in the phenotype.

Results

We first present the results for significant phenotypic differences and association with the 

genetic variants in the pooled sample. Next, we summarize the results for the analysis 

stratifying by age/gender.

Pooled sample

Phenotypic differences—Principal component analyses of the symmetric and 

asymmetric component of shape variation in the pooled sample resulted in seven symmetric 

and eight asymmetric components explaining 72.2% and 65% of the shape variation, 

respectively. These components, along with overall DA, individual-level FA scores and 

centroid size, were compared between cases and controls as described above. Of all these 

phenotypic measures, five varied significantly (P < 0.05) between cases and controls: three 

were principal components representing aspects of symmetric shape variation, one was a 

principal component capturing asymmetric shape variation, and the fifth was overall DA 

(Tables 6–8). We discuss each of these differences below.

Symmetric principal component 1 (SymmPC1) explained 19.6% of symmetric shape 

variation (Figs 2 and 3). With this component, cases tended to have a longer lower anterior 

facial height and a more protrusive chin, whereas controls had a greater tendency for a 

shorter, more convex face. Symmetric principal component 3 (SymmPC3) explained 12% of 

symmetric shape variation and revealed that cases had a tendency for a less protrusive nose 
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and overall mid-face face retrusion; controls showed the opposite morphology with midface 

face protrusion. Symmetric principal component 7 (SymmPC7) explained 3.6% of 

symmetric shape variation and showed cases to have a more protrusive forehead, a shorter 

nose and a steep mandibular plane. Asymmetric principal component 4 (AsymmPC4) 

captured 6.6% of the variation in the asymmetric component of shape and revealed a 

tendency for a left deviation of the base of the nose and chin among cases and the opposite 

morphology among controls (Fig. 4).

Procrustes ANOVA shape results indicated that DA and case–control status were the main 

sources of variation for the pooled sample. FA had the lowest effect on shape variation in 

the Procrustes ANOVA and subsequent regression analyses of individual FA scores showed no 

case–control differences. MANOVA results confirmed ANOVA findings, indicating that case–control 

status had a significant effect in the symmetric component and that both case–control status 

and DA had large effects in the asymmetric component of shape variation (Table 7). 

Discriminant function analysis of the asymmetric component of shape variation indicated 

greater DA among cases than controls (difference between means in Procrustes distance = 

0.00276566, P = 0.0338; and Mahalanobis distance = 0.8696, P = 0.0114, after 10 000 

permutations; Table 8). Given the difference in DA levels between cases and control, we 

evaluated whether DA differences varied by the laterality of the cleft present in the 1st 

degree relatives of cases by recoding cases into two groups: (i) relatives of an individual 

with a unilateral cleft lip and (ii) relatives of an individual with bilateral cleft lip. These two 

case groups were compared with the total control sample and with each other. Interestingly, 

levels of DA were significantly different between relatives of individuals with unilateral 

clefts compared with controls and almost significantly different when comparing relatives of 

unilateral vs. bilateral clefts. However, there was no difference in DA levels between 

relatives of individuals with bilateral clefts and controls (Table 8).

Phenotype–genotype correlations—Significant genotype–phenotype associations (P < 

0.05) from the regressions described above (for phenotypes that varied significantly between 

cases and controls) were identified for SNPs in genes SNAI1, LEFTY1, IRF6, MAFB and 

MSX1 (Table 6). SNAI1 was associated with SymmPC1; the rare allele for the SNAI1 SNP 

rs6012791 was associated with ‘control-like’ morphology with shorter and more convex 

faces. When case–control status was added as a covariate to the regression of SymmPC1 on 

SNAI1 SNP rs6012791 (and the age and sex covariates), the β coefficient of case–control 

status was 7.1% lower than that in the model excluding the SNP, indicating that differences 

in allele frequencies for this SNAI1 SNP partially explain (~7%) the phenotypic difference 

captured by SymmPC1 between cases and controls.

LEFTY1 SNP rs3766941 was associated with SymmPC3, which captured variation in 

maxillary protrusion or retrusion; the rare allele of the SNP was associated with ‘control-

like’ morphology with upper face protrusion. When adding case–control status to this 

regression and comparing its coefficient with that of the model excluding the SNP, the 

coefficient slightly increased, indicating that even though LEFTY1 was associated with 

SymmPC3 in the pooled sample, it did not explain any of the difference in this phenotype 

between cases and controls.
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SNPs in IRF6 rs2235371, MSX1 rs12532 and MAFB rs11696257 were associated with 

SymmPC7. The rare alleles of IRF6 rs2235371 and MSX1 rs12532 were related to ‘control-

like’ morphology including retrusive foreheads, flat mandibular planes and convex profiles. 

The IRF6 and MSX1 SNPs explained about 6.6 and 0.8% of the difference in SymmPC7 

between cases and controls, respectively. Lastly, the rare allele of MAFB rs11696257 was 

associated with ‘case-like’ morphology on SymmPC7 (Figs 2 and 3), but this SNP did not 

explain any of the difference in this phenotype between cases and controls. Finally, DA was 

significantly (P < 0.05) associated with SNPs in ABCA4-ARHGAP29, LEFTY1, LEFTY2, 

MSX1 and SNAI1. Unlike the regression models for phenotypes measured at the individual-

level, the MORPHOJ software for analyzing DA, a group-level trait, does not allow for evaluating 

the extent to which these SNPs explain case–control differences in DA levels.

Stratified analyses

Case–control comparisons of phenotypic data and phenotype– genotype correlations were 

performed in four separate subsamples as described above (Table 9): (i) adult males: case 

fathers and control adult males (18 years and older), (ii) adult females: case mothers and 

control adult females (18 years and older), (iii) subadult males: case male siblings and 

control subadult males (younger than 18 years) and (iv) subadult females: case female sisters 

and control subadult females (younger than 18 years). We summarize the main results for 

each of these subsamples below.

Adult male sample—PCA analyses resulted in eight symmetric and nine asymmetric 

components explaining 75.1 and 74.5% of the total variance in this subgroup, respectively. 

None of these components showed significant differences (P < 0.05) by case–control status. 

Procrustes ANOVA and MANOVA results also revealed no differences in DA and FA between cases 

and controls in this subgroup (Table 10).

Adult female sample—PCA analyses resulted in 10 symmetric and 11 asymmetric 

components that accounted for 82.5 and 75% of the symmetric and asymmetric total 

variance in this subgroup. SymmPC6, SymmPC10 and AsymmPC5 were significantly 

different (at P < 0.05) between cases and controls (Table 9). SymmPC6 explained 4.7% 

variance and captured variation in facial height, mouth width, nasal projection and concavity 

vs. convexity of the facial profile. Adult female cases showed increased lower facial height 

and decreased midfacial height, wider mouths, more superior placed and projecting noses, 

slightly narrower faces and a concave profile compared with controls. SymmPC10 

accounted for 2.5% of the total variance. On this component, cases tended to exhibit wider 

commissures, longer philtrums, upturned noses and slightly more prominent chins. 

Conversely, controls had significantly narrower commissures, shorter philtrums and down-

turned noses inclined anteriorly near the point of nasion (Figs 5 and 6).

AsymmPC5 explained 6% of the variation and showed that case mothers had a tendency for 

left-oriented chins and superior portion of the nose, with a slightly right orientation of the 

philtrum (Fig. 7).

Procrustes ANOVA and MANOVA showed that DA and case–control status made the largest 

contribution to overall shape variation in the adult female sample followed by symmetric 
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variation and lastly FA (Table 10). However, there was no significant difference in overall 

DA between cases and controls. In contrast, centroid size and Mahalanobis FA scores varied 

significantly by case–control status (Table 9). Adult female cases had larger centroid sizes 

overall (P = 0.002) and greater FA when compared with controls (P = 0.04).

Significant (P < 0.05) phenotype–genotype associations were found for ABCA4-ARHGAP29 

and LEFTY1 (Table 9). SymmPC10 was associated with ABCA4-ARHGAP29 rs560426 (P = 

0.0005) with the rare allele related to a ‘case-like’ morphology with wider mouths, and less 

projecting and upturned noses (Figs 5 and 6). LEFTY1 rs360059 was associated with 

AsymmPC5 (P = 0.042; Table 9), with the rare allele related to a ‘case-like’ morphology 

with left-oriented base of the nose and chin. Additional regression models were explored for 

SymmPC10 and AsymmPC5, including case/control status and SNPs rs560426 (ABCA4-

ARHGAP29) and rs360059 (LEFTY1), respectively. Comparison between b coefficients for 

models excluding and including the SNPs indicated that the variation on both phenotypes 

cannot be explained by the difference in allele frequencies by cases and controls.

Subadult male sample—PCA analyses resulted in seven symmetric and 10 asymmetric 

principal components, each set explaining about 74% of the total shape variation in this 

subgroup. Of these, only SymmPC5, which accounted for 5.8% of the variation, was 

significantly related to case–control status (P = 0.04; Table 9). On this component, cases 

showed less projecting noses, marked midfacial retrusion, increased facial height and 

narrower faces and mouths compared with controls (Fig. 8).

Procrustes ANOVA and MANOVA showed that overall DA and symmetric shape variation had the 

largest influence on overall shape variation within this subgroup (Table 10B). However, 

there were no significant differences in overall DA and FA between cases and controls. 

Also, none of the SNPs were significantly related to SymmPC5 – the only phenotype that 

varied by case–control status in this subgroup.

Subadult female sample—PCA resulted in nine symmetric and nine asymmetric 

components explaining 79.5 and 75% of the total shape variation in this subgroup, 

respectively. Of these, only SymmPC2 and SymmPC9 showed significant differences (P = 

0.049 and P = 0.033, respectively) between cases and controls. SymmPC2 explained 16.3% 

of the total variance and accounted for differences in facial and mouth width, chin and nasal 

projection. On this component, cases showed reduced nasal projection, smaller and retruded 

chins, and narrower mouths. SymmPC9 explained 3.8% of the total variation and captured 

overall facial width and height and, to a lesser degree, midfacial and chin projection. It 

revealed cases to have longer faces, steeper mandibular planes and more concave profiles 

compared with wider and shorter faces among controls (Figs 9 and 10).

Procrustes ANOVA and MANOVA showed that DA and case–control status made the largest 

contribution to overall shape variation in the subadult female sample followed by symmetric 

variation and lastly FA (Table 10). However, DA and FA did not vary significantly between 

cases and controls in this subgroup, nor did centroid size.
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A SNP on LEFTY1 (rs360059) was associated (P = 0.037) with SymmPC2; the rare allele 

was related to ‘control-like’ morphology with more prominent and projecting noses and 

chins and narrower faces. But this SNP did not explain any of the difference in SymmPC2 

by case–control status. None of the SNPs were related to SymmPC9 in this subgroup.

Discussion

Facial morphology differences between cases and controls

Previous studies have shown that seemingly unaffected relatives of NSCL/P individuals 

have shorter and more retrusive upper faces, longer and more protrusive lower faces, wider 

soft tissue noses and wider nasal cavities compared with controls (McIntyre & Mossey, 

2002; Maulina et al., 2006; Weinberg et al., 2006, 2008a, b, 2009). In the current study we 

found several phenotypic differences between cases and controls that mirrored previous 

studies. In general, findings for symmetric shape variation in our pooled case sample 

showed profile concavity with upper face retrusion, an upturned nose with an obtuse 

nasolabial angle, a protrusive chin, increased lower facial height, thinner and more retrusive 

lips, and slightly more protrusive foreheads compared with controls. Our findings in 

subgroups stratified by age/gender are overall similar with some features that are specific to 

the subgroup. For example, our male cases showed more retrusive midfaces, decreased 

upper face height and increased lower face height compared with controls, regardless of the 

age group evaluated, yet these features were only statistically significant (at P < 0.05) for the 

subadult males (Fig. 8). For females, some similarities are noted between our findings and 

previously published work, such as increased lower face heights, projecting chins and steep 

mandibular planes. In addition, we found new and previously unreported differences for 

adult female cases including larger faces (i.e. larger centroid sizes), a tendency for an obtuse 

nasolabial angle, and bimaxillary retrusion resulting in a ‘dished in’ appearance with 

retrusion in the midface and in the superior aspect of the nose and forehead (Fig. 5). The 

subadult female group also showed the obtuse nasolabial angle and the bimaxillary 

retrusion, yet faces were slightly wider than the controls (Figs 9 and 10).

Overall, facial features observed in our case relatives are very similar to those observed in 

cephalometric studies of unrepaired patients (Bishara et al., 1986; da Silva Filho et al., 1998; 

Liao & Mars, 2005). In a study by da Silva Filho et al. (1998). Males and females with 

bilateral clefts were found to have more bimaxillary retrusion and increased nasoloabial 

angle than controls, features that resemble those we found in case relatives. Thus, our results 

combined with those of the previous studies indicate a pattern of craniofacial features 

characterized mostly by a shorter and a more retrusive upper face, a longer lower face, and a 

downward and backward rotation of the mandible which seems not to be a consequence of 

surgical procedures, as these are observed in unaffected relatives, but rather a feature of the 

phenotypic spectrum of NSCL/P in individuals with cleft genetic risk.

In terms of asymmetric variation, both DA and FA have been found in the craniofacial 

complex of normal individuals (Johnson et al., 2008) and in individuals with craniofacial 

anomalies such as fetal alcohol syndrome (Klingenberg et al., 2010) and NSCL/P (Bock & 

Bowman, 2006). Moreover, one study of hard tissue asymmetry in parents of children with 

NSCL/P from PA cephs showed size and shape DA in the craniofacial complex (McIntyre & 
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Mossey, 2010). However, that study did not have controls without a family history of 

clefting to compare with affected relatives, making it unclear whether DA was more 

common in carriers of cleft risk (McIntyre & Mossey, 2010). More recently, FA was also 

identified in relatives of children with clefts from different ancestral backgrounds (Otero et 

al., 2012). In the current study, we identified DA to be the main source of asymmetric shape 

variation in our sample, followed by FA. The pooled analysis showed significantly different 

levels of DA in cases compared to controls in Procrustes distances (PD) (P = 0.037) and T-

square (TS) statistics (P = 0.011). When examining DA differences by the cleft laterality of 

the affected child, we found that levels of DA differed significantly between relatives of 

children with unilateral clefts and controls (P = 0.046/0.006 for PD and TS, respectively) 

and almost significantly when compared to relatives of bilateral cases (P = 0.671/0.067 for 

PD and TS, respectively). However DA was not significantly different between relatives of 

bilateral cases and controls (Table 8). This finding for DA requires replication in other 

samples; however, it is intuitive and consistent with the theory that DA is more relevant for 

those who carry risk for unilateral clefts than for bilateral clefts.

In contrast, differences in FA were less prominent in our sample. Only one asymmetric 

component of variation in the pooled sample (AsymmPC4), capturing FA in the nose, 

philtrum of the lip and the chin, was significantly different between cases and controls (Fig. 

4). This difference was also found among adult females captured by AsymmPC5 (Fig. 7). 

Only adult female cases had significantly higher FA scores than controls (FA score 

differences were insignificant in the pooled sample), suggesting potential heterogeneity in 

FA differences between cases and controls by age/gender.

Even though our study is exploratory in many aspects and its sample size is comparable to, 

and in certain cases larger than, previous studies in this area, our sample is still relatively 

small and limited in power to detect all differences at a conservative type-1 error level. We 

followed a type-1 error of 5% to summarize our findings, but recognize that it is important 

to consider an adjustment for multiple testing before making robust statistical conclusions. 

One approach commonly followed in similar studies would be to use a Bonferroni-type 

correction based on the number of phenotypes tested: this would reduce the significance 

level to 0.003, given that we test up to 14 phenotypes between cases and controls (P = 

0.05/14 maximum number of phenotypes tested). Following this adjustment, only two 

findings of the several phenotypic differences significant at P < 0.05 between cases and 

controls have P-values below this adjusted significance threshold: AsymmPC4 in the pooled 

sample and centroid size in the adult female subgroup (P < 0.003; Tables 6 and 9). 

Therefore, even though our study points to several potential phenotypic differences, clearly 

larger samples are needed for a more definitive assessment.

Genetic associations with symmetric shape variation

Our analyses suggested that several aspects of symmetric shape variation, including 

protrusion/retrusion of the mid-face and chin, facial height and width, nose projection, and 

protrusion of the nasal base, which varied significantly between cases and controls were 

associated with SNPs in craniofacial and left–right body patterning genes. Some of these 

associations are worth highlighting and discussing. SNAI1 was associated with facial height 
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and width and the anterior-posterior (AP) position of the chin. SNAI1 is expressed 

throughout the palatal shelf mesenchyme with high levels of expression in the medial edge 

epithelium which is crucial in the fusion of palatal shelves. In addition, neural crest-specific 

Snai1 deletion in Snai2−/− mice results in multiple craniofacial defects including cleft palate 

caused by failure of the mandible to move forward, similar to cases with Pierre Robin 

sequence, indicating that SNAI1 is an important candidate for studying variation in facial 

morphology related to the NSCL/P spectrum. Interestingly, the SNAI1 SNP explained up to 

7% of the phenotypic difference between cases and controls on SymmPC1, a rather 

considerable effect given the multifactorial and complex etiology of facial phenotypes.

The AP position of the midface and facial asymmetry were associated with LEFTY1. The 

most studied role for LEFTY1 is its function in L–R body patterning. Therefore the 

associations with facial asymmetry we found, including those with both DA and FA, were 

encouraging findings. However, the association with midfacial AP projections is less clear 

given current knowledge about LEFTY1. Future research is needed to confirm and, if so, 

explain the role of this gene in the antero-posterior growth of the midface.

The AP position of the chin was also associated with SNPs in IRF6, MSX1 and MAFB. 

These associations of IRF6 and MSX1 with AP facial shape variation that we observed are 

consistent with the phenotypic expression of the null mice which present with shorter and 

rounded snouts and jaws in the case of Irf6 nulls (Ingraham et al., 2006) and reduced overall 

length of the mandible in the Msx1 nulls (Satokata & Maas, 1994). Our results with MAFB 

are also in line with the expression pattern of this gene in the craniofacial ecto-derm and 

neurocrest-derived mesoderm in mice during palatal shelf fusion; therefore, MAFB 

constitutes a good candidate for future studies of NSCL/P-specific craniofacial morphology 

(Beaty et al., 2010).

Interestingly, we found no associations between PAX7 and symmetric shape phenotypes 

despite evidence that this gene is involved in maxillary and nasal development and has been 

implicated in cleft palate formation (Mansouri et al., 1996).

As for the case of analyzing phenotypic differences between cases and controls, our analyses 

of genetic associations with these differences are also considered exploratory and are limited 

by the study sample size to only capturing large associations. Therefore, even though we 

find several suggestive associations that are significant at P < 0.05, most of these would not 

be considered strictly significant when accounting for the multiple genetic tests. Indeed, if 

we apply a Bonferroni-type correction to the significance threshold for the 20 SNPs we 

tested, only two genotype–phenotype associations remain significant at P = 0.0025 (P = 

0.05/20 SNPs): IRF6 with SymmPC7 (P < 0.001) in the pooled sample and ABCA4-

ARHGAP29 with SymmPC10 in the adult female subgroup (P = 0.0005). Even though such 

associations involve phenotypes that explain a small percentage of the total facial variation, 

these findings in a rather limited sample size suggest that these two genes could be 

prioritized in future analyses of facial morphology in individuals with cleft risk. In addition, 

as a whole, our multiple findings of possible genetic associations with facial phenotypes 

highlight the value of pursuing the same research question and approach in larger and more 

powerful samples.
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Genetic associations with asymmetric shape variation

Directional asymmetry and FA are key features in studying craniofacial anomalies, yet the 

biological mechanisms underlying these sources of asymmetry are still unclear and 

controversial. Although FA had been considered to be largely of environmental origin and 

DA to have a genetic basis, recent studies have shown evidence of genetic mechanisms for 

both (Leamy et al., 2000). Heritability studies of FA on a single trait have shown low 

heritability estimates (H = 0.03). However, when FA is measured by a composite of traits, 

FA heritability estimates increase to moderate levels (H = 0.3; Johnson et al., 2008). FA has 

also been considered a good measure of developmental instability, which is defined as the 

failure to produce optimal and precise outcomes in the generation of traits in different 

environments. Therefore, it is possible that variation in genes that play a role in the 

formation of the lip and palate can partly account for subtle left–right phenotypic differences 

in individuals carrying cleft risk either directly or by increasing susceptibility to 

environmental risk factors that interfere with the development of the craniofacial structures 

through a gene × environment interaction mechanism. Exploring such interactions with large 

samples and rich environmental data is an important avenue for future research.

Given the higher genetic heritability estimates for DA (as high as 0.21 for the sum of DA 

values for multiple characters combined; Leamy, 1999) and the specific genetic pathways 

that control the formation of asymmetric structures, it is reasonable to assume a genetic 

influence on DA (Palmer, 1994; Leamy et al., 2000) and to rule out DA as a good measure 

of developmental instability (Palmer, 1994). However, genetic studies for QTLs in mouse 

mandibles both utilizing multi-landmark measurements as well as GM methods have only 

shown a handful of QTLs with minor effects on DA and even less on FA of size and shape 

(Leamy et al., 2000; Klingenberg et al., 2001), suggesting small genetic contributions to 

both sources of asymmetry when single locus models (additive, dominant effects) are 

utilized. Theoretical models of FA have proposed genetic epistasis as the likely mechanism 

for FA in a bilateral trait for which different genes contribute to its overall development and 

formation (Klingenberg & Nijhout, 1999). This epistatic model was tested by Leamy et al. 

(2002) in a genome-wide scan for QTLs affecting FA in the centroid size of the mouse 

mandible. Strong evidence of genetic epistasis was observed, indicating that single locus 

models were underpowered to detect the genetic loci for FA in the mandible (Leamy et al., 

2002). Similar models of genetic epistasis were later utilized to investigate FA of tooth size 

and shape. Once again, genetic epistasis was largely detected and, interestingly, most of the 

QTLs detected in the epistatic models were coincident with those controlling tooth size and 

shape (Leamy et al., 2005), rendering support to the theoretical model of Klingenberg & 

Nijhout (1999) that the same genes responsible for the formation of a bilateral trait may be 

responsible for the expression of FA in that trait.

Our findings of different levels of DA in relatives of individuals with unilateral clefts 

compared with controls or relatives of individuals with bilateral clefts are particularly 

interesting because they highlight a potential mechanism for DA in unilateral clefts. In the 

same vein, the associations of left–right body patterning genes, LEFTY1, LEFTY2 and 

SNAI1, with DA could shed some light on potential pathways to be considered in future 

studies of facial asymmetry. The difference in FA scores between cases and controls and 
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association with LEFTY1 were specific to adult females, suggesting potential heterogeneity 

by age/gender. However, these results need to be confirmed with larger samples.

Conclusion

In conclusion, our results demonstrate once again the presence of distinct craniofacial 

characteristics of facial shape and asymmetry in seemingly unaffected relatives of 

individuals with NSCL/P. Measuring these phenotypic differences may be useful for 

predicting risk. For example, regressing case–control status on the four individual-level 

phenotypes (three principal components for symmetric and one for asymmetric variation) 

that were significantly different between cases and controls shows that these phenotypes 

collectively explain ~8% of the risk of being a first degree relative of an individual with an 

oral cleft (adjusting for sex and age). This is a reasonable explanatory power given the 

complexity of cleft risk. In such a model, one can calculate how individual-level risk 

changes with different values of these phenotypes. This example highlights the capacity of 

improved subphenotypic characterization for predicting NSCL/P risk. Certainly, reliable risk 

estimation requires development of these models in larger data sets. In addition, our study 

presents suggestive evidence that genes involved in lip and palate formation also contribute 

to facial features that are part of the overall phenotypic spectrum of orofacial clefting and 

such features are more commonly present in individuals who carry a genetic risk for oral 

clefts. Even though most of our findings on phenotype differences or genetic associations do 

not surpass a Bonferroni correction for multiple testing, the results as a whole, including the 

significant findings after this correction and the multiple suggestive findings consistent with 

previous findings and knowledge of biological mechanisms, lend support to our hypothesis 

of a genetically influenced wide phenotypic spectrum of NSCL/P and to the value of our 

research approach. Therefore, future studies should assign these genetic pathways high 

priority.

Of course, the limitation of small sample size and power point to the need for larger sample 

sizes in the future. To further increase our understanding of the phenotypic diversity in 

NSCL/P and underlying etiologies, future large consortium studies combining multiple 

sources of samples and extensive genetic data sets including genome-wide association study 

(GWAS) data and any sequencing data will be needed. Such studies will further enable the 

heterogeneity in subphenotyping variation and genetic associations to be explored not only 

by age/gender, which we explore in this study, but also by cleft type (i.e. cleft lip only vs. 

cleft lip and palate), a potentially important modifier that we were unable to examine due to 

the small sample size. Fortunately, such collaborative efforts are underway and will 

eventually offer an opportunity to test our findings on larger data sets and expand our 

research question to many more genetic pathways. Such studies could bring tremendous 

value for the improvement of the prediction of risk for and diagnosis of NSCL/P and for the 

design of novel therapies that can improve surgical outcomes in patients with craniofacial 

conditions.
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Fig. 1. 
A graphical representation of the location of all 32 coordinate landmarks. For a complete list 

and descriptions, refer to Table 4.
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Fig. 2. 
Lateral view of the three components of facial shape symmetric variation SymmPC1, 

SymmPC3 and SymmPC7 found to differ significantly (P < 0.05) between cases and 

controls in the pooled sample. From this figure on, light blue represents the average facial 

shape configuration within each component and dark blue represents a configuration with an 

arbitrary positive or negative PC score for each component shown. To facilitate case–control 

shape comparisons, positive and negative configurations were displayed so that those 

representing cases are shown on the top panel and controls in the bottom panel. Also shown 

are genes and loci that correlated with specific shape components. The position of the gene 

in each diagram indicates that more copies of a rare allele of the gene in an individual’s 

genotype are correlated with that specific facial shape.
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Fig. 3. 
Frontal view of the three components of facial shape symmetric variation SymmPC1, 

SymmPC3 and SymmPC7 found to differ between cases and controls in the pooled sample.
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Fig. 4. 
Frontal view of the one component of facial shape asymmetric variation AsymmPC4 found 

to differ significantly (P < 0.05) between cases and controls in the pooled sample.
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Fig. 5. 
Lateral view of the components of facial shape symmetric variation found to differ between 

cases (top) and controls (bottom) in the female adult sample.
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Fig. 6. 
Frontal view of the components of facial shape symmetric variation found to differ between 

cases (top) and controls (bottom) in the female adult sample.
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Fig. 7. 
Components of facial shape asymmetric variation found to differ between cases (top) and 

controls (bottom) in the adult female samples.
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Fig. 8. 
Lateral and frontal view of the component SymmPC5 of facial shape symmetric variation 

found to differ between cases and controls in the male sub adult sample.
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Fig. 9. 
Lateral view of the components of facial shape symmetric variation found to differ between 

cases (top) and controls (bottom) in the female subadult sample.
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Fig. 10. 
Frontal view of the components of facial shape symmetric variation found to differ between 

cases (top) and controls (bottom) in the female sub adult sample.
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Table 1

Listing and description of clefting and craniofacial candidate genes genotyped for the present study.

Gene

Selective* references 
reporting
association with NSCL/P

Gene expression pattern and/or
craniofacial anomalies associated

References

PAX7 Sull et al. (2009) and 
Ludwig et al. (2012)

PAX 7 is expressed in craniofacial neural crest derivatives 
and knockout mice exhibit malformations in the maxilla and 
nose

Mansouri et al. (1996)

ABCA4-ARHGAP29 Beaty et al. (2010) and 
Leslie et al. (2012)

ARHGAP29 is expressed in the medial and lateral nasal 
processes, maxilla, mandible and secondary palatal shelves

Leslie et al. (2012)

IRF6 Rahimov et al. (2008) IRF6 knockouts present with shorter and rounded snouts and 
jaws

Ingraham et al. (2006)

MSX1 Lidral et al. (1998) MSX1 null mice present with anomalies of the frontal and 
nasal bone, reduced overall length of the mandible, deficient 
alveolar bone, abnormal dental development and cleft palate

Satokata & Maas 
(1994)

8q24_rs987525 Birnbaum et al. (2009) and 
Grant et al. (2009)

rs987525 was found associated with bizygomatic distance in 
a recent GWAS study

Boehringer et al. 
(2011)

FOXE1 Moreno et al. (2009) Mutations in FOXE caused Bamforth–Lazarous syndrome in 
humans characterized by hypothyroidism, hair and 
craniofacial anomalies including cleft palate and ocular 
hypertelorism

Bamforth et al. (1989)

TGFB3 Lidral et al. (1998) TGFB3 Null mice present with cleft palate. TGFB3 is 
differentially expressed in the different species of bird beaks 
and presumably playing a role in the morphogenesis of avian 
beaks

Kaartinen et al. (1995) 
and Brugmann et al. 
(2010)

MAFB Beaty et al. (2010) MAFB is expressed in the craniofacial ectoderm, palatal 
shelves and nasal septum

Beaty et al. (2010)

*
Many other studies have reported association between these genes and NSCL/P (see review Dixon et al., 2011; Marazita, 2012).

J Anat. Author manuscript; available in PMC 2014 August 19.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Miller et al. Page 33

Table 2

Listing and description of left–right (L/R) body patterning candidate genes genotyped for the present study.

Gene Role in L/R body patterning References
Craniofacial expression and/or
craniofacial anomalies associated References

LFFTY1 Member of the TGFB family that functions as an 
antagonist of the Nodal signaling which is 
essential or the L/R patterning of the embryo. 
Lefty1 is expressed on the left side of the 
prospective floor plate and acts as the anterior 
midline barrier to signals that determine leftness. 
Lefty1 null mice in which Nodal, Lefty2 and 
Pilx2 are expressed bilaterally in the lateral plate 
mesoderm (LPM) develop left isomerism (both 
sides develop left side characteristics)

Hamada et al. 
(2002)

LFFTY2 Also a member of the TGFB family of proteins. 
Expression of Lefty2 is induced by nodal also on 
the left side of the LPM. Lefty2 is not a left-side 
determinant but a regular of the Nodal action. 
Lefty2 mutant mice have a prolonged expression 
of Nodal and also develop left isomerism

Hamada et al. 
(2002)

PITX2 Transcription factor important in asymmetric 
morphogenesis in response to Nodal. It is 
expressed in the left side of the LPM and persists 
longer than Nodal and Lefty2. Pitx2 is also 
expressed in the primordia of asymmetric organs 
and midgut during development. Pitx2 null 
embryos develop cardiac defects and right 
pulmonary isomerism

Lu et al. 
(1999)

In mice, Pitx2 is expressed in the epithelium 
of maxilla, mandible and the mesenchyme of 
the dental lamina. Pitx2 null mice present 
defects in maxilla and mandible, cleft palate 
and arrested tooth development. Also, 
heterozygous mice for a Pitx2 null allele 
show malocclusion of teeth and marked 
asymmetry of the incisors. In humans, 
PITX2 mutations cause Reiger syndrome 
and patients present with maxillary 
hypoplasia, hypertelorism, telecanthus and 
dental anomalies of number and shape

Semina et al. 
(1996) and 
Lu et al. 
(1999; Gage 
et al. 1999)

ISL1 ISL1 is a LIM homeodomain containing 
transcription regulator that participates in 
determining cell fate and thus is important in the 
embryogenesis of multiple organs and tissue 
types including the heart, pancreas and intestine. 
Isl1 null mice exhibit large developmental 
anomalies and arrest early in development. Isl1 
and Pitx2 are necessary and sufficient for the 
asymmetric morphological changes in the cells 
of the epithelium and mesenchyme of the dorsal 
mesentery which result in the midgut looping

Davis et al. 
(2008) and 
Kurpios et al. 
(2008)

ISL1 cell lineage contributes to both cardiac 
and head muscle progenitors. In mice, Isl1 is 
expressed in the medial splanchnic 
mesoderm of the distal region of the 1st 
branchial arch and also in the 2nd branchial 
arch derived muscles which control facial 
expression and to a lesser extend masticatory 
muscles such as masseter, pterygoid and 
temporalis and the mandibular adductor 
complex in the chick. In addition, Isl1 is 
expressed in the oral epithelium of mice at 
E9 restricted to the distal region, which is 
the future site for incisor development. 
Subsequently, Isl1 is expressed in epithelial 
cells during all stages of incisor 
development

Mitsiadis et 
al. (2003) and 
Tzahor 
(2009)

SNAI1 Snai1 is a zinc finger transcriptional repressor 
important in epithelial to mesenchymal 
transitions that contribute to the formation of the 
mesoderm. Snai1 null mice die shortly after birth 
due to defects in mesoderm formation. Snai1 
conditional knockouts present heart anomalies 
consistent with randomization in left–right 
specification. In addition, Snai1 conditional 
embryos display bilateral expression of Nodal, 
Lefty2 and Pitx2 in the LPM and do not express 
Lefty1 in the midline of the prospective floor 
plate. Thus Snai1 functions downstream of the 
initial left–right symmetry-breaking event and 
regulates expression of laterality genes in the 
LPM

Murray & 
Gridley 
(2006)

Snai1 is expressed throughout the palatal 
shelf mesenchyme with high levels along the 
medial edge epithelium (MEE). Snai2 
expression is more diffused but present 
throughout the palatal mesenchyme and 
epithelium. 50% of Snai2−/− have cleft 
palate, which is completely penetrant in 
Snai1+/− Snai2−/−. The cleft palate in the 
Snai1+/− Snai2−/− is due to a fusion failure 
caused by abnormal cell death along the 
MEE and also a defect in periderm migration 
towards the oral and nasal epithelium. 
Neural crest specific Snai1 deletion in 
Snai2−/− mice present with multiple 
craniofacial defects including cleft palate 
caused by failure of the mandible to move 
forward similarly to Pierre Robin sequences. 
Also, mice presented with dome-shape 
skulls, shortened parietal bones and enlarged 
frontal foramen, confirming a role for Snai 

Murray et al. 
(2007)
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Gene Role in L/R body patterning References
Craniofacial expression and/or
craniofacial anomalies associated References

genes in later development of cranial neural 
crest-derived structures
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Table 4

A list of all 32 3D coordinate landmarks used in the present study with included descriptions. Refer to Fig. 1 

for landmark locations.

No. Landmark Abbreviation Description

1 Glabella g The most forward projecting point of the forehead in the midline of the supraorbital 
ridges

2 Nasion n The outer point of intersection between the nasion-sella line and the soft tissue profile 
(radiographic soft tissue nasion)

3 Pronasion prn The most prominent point on the tip of the nose when the head is placed in the eye–ear 
(horizontal) plane

4 Subnasale sn The point at which the nasal septum merges, in the midsagittal plane, with the upper lip

5 Labiale Superius ls The most prominent superior midline point of the vermillion border of the upper lip

6 Stomion sto The median point of the oral slit when the lips are closed

7 Labiale Inferius li The most prominent inferior midline point of the vermillion border of the lower lip

8 Sublabiale sl The deepest midline point on the labiomental fold, which determines the lower border of 
the lower lip or the upper border of the chin

9 Pogonion pg The craniometric point that is the most forward-projecting point on the anterior surface 
of the chin

10 Gnathion gn The lowest point on the anterior margin of the lower jaw in the midsagittal plane

11 Right Endocanthion en Inner corner of the right eye

12 Right Palpebrale Superius ps Highest point in the midportion of the free margin of right upper eyelid

13 Right Exocanthion ex Outer corner of the right eye

14 Right Palpebrale Inferius pi Lowest point in the midportion of the free margin of right lower eyelid

15 Left Endocanthion en Inner corner of the left eye

16 Left Palpebrale Superius ps Highest point in the midportion of the free margin of left upper eyelid

17 Left Exocanthion ex Outer corner of the left eye

18 Left Palpebrale Inferius pi Lowest point in the midportion of the free margin of left lower eyelid

19 Right Alare al Right-most lateral point on the alar contour

20 Right Alar Curvature Point ac The right-most lateral point on the curved baseline of each ala, indicating the facial 
insertion of the nasal wing base

21 Right Subalare sbal The right point at the lower limit of the alar base, where the alar base disappears into the 
skin of the upper lip

22 Right Columnella c Most anterior soft tissue point on right side of columnella

23 Left Alare al Left-most lateral point on the alar contour

24 Left Alar Curvature Point ac The left-most lateral point on the curved baseline of each ala, indicating the facial 
insertion of the nasal wing base

25 Left Subalare sbal The left point at the lower limit of each alar base, where the alar base disappears into the 
skin of the upper lip

26 Left Columnella c Most anterior soft tissue point on left side of columnella

27 Right Chelion ch Right point at the corner of the mouth on the labial commissure

28 Right Crista Philtri cph The right point on the elevated margin of the philtrum just above the vermillion line

29 Left Chelion ch Left point at the corner of the mouth on the labial commissure

30 Left Crista Philtri cph The left point on the elevated margin of the philtrum just above the vermillion line

31 Right Otobasion inferius obi Point of attachment of ear lobe to cheek on right side

32 Left Otobasion inferius obi Point of attachment of ear lobe to cheek on left side
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